

MODELLING THE IMPACT OF CACHING AND POPULARITY ON ADAPTIVE MULTIMEDIA STREAMING IN INFORMATION-CENTRIC NETWORKS

C. Kreuzberger, B. Rainer, and <u>H. Hellwagner</u>

Klagenfurt University, Austria Institute of Information Technology · Multimedia Communication <u>Christian.Kreuzberger@itec.aau.at</u>, <u>Hermann.Hellwagner@itec.aau.at</u>

System Model

Users perform "Dynamic Adaptive Streaming over NDN" in a DASH-like manner

(MPEG-)DASH IN A NUTSHELL

- DASH := Dynamic Adaptive Streaming over HTTP (http://dash.itec.aau.at)
- Goal: efficient, adaptive multimedia streaming over HTTP/TCP in today's Internet

MULTIMEDIA STREAMING IN NDN – Our Approach

Combine MPEG-DASH & NDN

I.e., integrate DASH-style content provisioning and delivery into NDN architecture \rightarrow "DAS over NDN"

PROBLEM

Determine (model for)

fair bandwidth allocation

for dynamic adaptive streaming in NDN, while

 considering (maximizing) content quality (users' satisfaction)

and understanding the impact of

- in-network caching and
- content popularity,

to get an upper bound for achievable quality

CONTENT POPULARITY

• Usual model: Zipf's Law (Power Law)

• Typical values for α in multimedia context:

• 0.0 (Uniform), **0.8, 1.2,** 2.0 (Very popular)

PROBLEM SETTING I

Approach

"Traffic Shaping" & Dyn. Adaptive Streaming:

- On the server, shape traffic, i.e., control the bitrate of each stream, such that all streams share the available capacity in a fair way (e.g., quality aware)
- Minimize unused bandwidth
- Popularity considered via ranked content catalogue
- Various approaches (for DASH) exist, e.g., Begen et al., NOSSDAV 2013

- Bottleneck link capacity: bw(s) = 10 Mbit/s
- Video bitrates: 1, 2, 5 Mbit/s
- Share capacity for 2, ..., 6 users and minimize unused bandwidth

Cap.	#User	User 1	User 2	User 3	User 4	User 5	User 6	Unused
10	2	5	5					0
10	3	5	2	2				1
10	4	5	2	2	1			0
10	5	2	2	2	2	2		0
10	6	2	2	2	2	1	1	0

DETERMINE AVERAGE QUALITY WITHOUT CACHING

$$\pi(u_i) \leftarrow 0, \forall i \in \{1, 2, \dots, |\mathcal{U}|\}:$$

$$b_{last} \leftarrow 0; \gamma_{last} \leftarrow 0$$

$$c \leftarrow bw(s)$$

$$\mathcal{BR}' \leftarrow \{b \in \mathcal{BR} : b \ge b_{feasible}\}$$
for all $b \in Sorted(\mathcal{BR}')$ do
if $c < b$ then
break
end if
 $\gamma_b = \min\left\{|\mathcal{U}|, \left\lfloor \frac{c}{b - b_{last}} \right\rfloor\right\}$
 $c \leftarrow c + \gamma_b \cdot (b_{last} - b)$
 $\pi(u_i) \leftarrow b, \forall i \in \{1, 2, \dots, \gamma_b\}$
 $b_{last} \leftarrow b; \gamma_{last} \leftarrow \gamma_b$
end for

▷ Initialize policy
▷ Helper variables
▷ Remaining capacity

 \triangleright Iterate over sorted bitrates

 \triangleright Not enough capacity remaining

Algorithm 1: Determine a bandwidth allocation which prefers users consuming popular content, and maximizes the quality for all users.

PROBLEM SETTING II

Introducing caching as an "ideal NDN cache":

Question: How much can we gain (theoretically) in terms of quality by having *k* items available in an "ideal cache"?

NOTATIONS AND SETTINGS

$bw(s) \in \mathbb{N}$	Server capacity in Kilobit/s 100,, 1500 Mbit/s
U	Set of users U = 1000 users
V	Set of videos V = 10 videos
$\mathcal{BR}\subset\mathbb{N}$	Set of bitrates in Kilobit/s, e.g.: BR = 20
	$\mathcal{BR} = \{0, 500, 1000, 1500, \dots, 9500, 10000\}$
$b_{min} > 0$	Minimum Bitrate, $b_{min} := \min\{b \in \mathcal{BR} : b \neq 0\}$
$b_{avg} > 0$	Average Bitrate, $b_{avg} := \frac{bw(s)}{ \mathcal{U} }$
$b_{feasible} \in \mathcal{BR}$	Bitrate such that every user is able to stream
	$b_{feasible} := \max\{b \in \mathcal{BR} : b \le b_{avg}\}$
$\underline{\mathrm{SSIM}}(v,b) \in [0,1]$	Structural Similarity of video $v \in \mathcal{V}$ at bitrate $b \in \mathcal{BR}$
π	Traffic shaping policy
$\pi(u) \in \mathcal{BR}$	Bitrate in Kilobit/s for user $u \in \mathcal{U}$
$\pi(v) \in \mathcal{BR}$	Bitrate in Kilobit/s for video $v \in \mathcal{V}$
$\operatorname{Pop}(v) \in [0,1]$	Popularity of a video $v \in \mathcal{V}$

Goal: Determine bitrates

MODELING CACHING

Linear Program (Assignment Problem):

Cached videos are only transfered once from the origin server

Remaining videos are transfered Popularity * |U| times

k ... Number of items in cache

ASSUMPTIONS

- Critical: clients streaming the same video need to request the same representation(s) for caching to be effective
 - Traffic shaping helps to achieve that
 - Extension: cooperative or cache-aware adaptation behavior on clients

Alternative: Layered Content (SVC)

- Content with higher quality depends on content with lower quality, therefore redundancy is reduced
- Improves cache usage, as content with lower quality is more likely to be cached already

AVERAGE QUALITY WITH CACHING (K=1)

AVERAGE QUALITY WITH CACHING (K=1)

C. Kreuzberger, H. Hellwagner

Modeling the Impact of Caching and Popularity in ICN

AVERAGE QUALITY WITH CACHING (K=1)

IMPACT OF CACHE SIZE

Avg. SSIM

Modeling the Impact of Caching and Popularity in ICN

IMPACT OF POPULARITY (K=2)

C. Kreuzberger, H. Hellwagner

Modeling the Impact of Caching and Popularity in ICN

CONCLUSION AND RESULTS

- We modeled an upper bound for the impact of popularity and caching of concurrent adaptive multimedia streams in NDN
- We showed the potential impact of caching k items
- Caching always helps, even in the case of a uniformly popular content
- Critical: clients streaming the same video need to request the same representation(s) for caching to be effective