
University of Minnesota | Networking Lab

CONIA: Content (Provider)-Oriented
Namespace-Independent Architecture for

Multimedia Information Delivery

July 3, 2015
MuSIC (co-located with ICME) 2015, Torino, Italy

Eman Ramadan, Arvind Narayanan, Zhi-Li Zhang
Department of Computer Science & Engineering

University of Minnesota, Minneapolis, USA

University of Minnesota | Networking Lab

  Introduction & Motivation

  Architecture

  Hints on Design & Implementation

  Use Cases

  Conclusion

Outline

CONIA (MuSIC 2015) # 2

University of Minnesota | Networking Lab

  Streaming services have expanded the role of Content
Distribution Networks (CDNs) to a new level

  For example, Netflix consumed almost a third of North
America’s downstream traffic in 2014[1]

Limitation of Today’s Internet

CONIA (MuSIC 2015) # 3

Netflix Architecture [2]

Netflix designed
OpenConnect to have
more control in content
distribution [3]

University of Minnesota | Networking Lab

  Better handling the diversity and complexity associated with
multimedia content

  For example, video object is composite
  no single namespace can fit it all

  Need for Content providers (CPs) to have a larger say in

provisioning and dynamically distributing content
  e.g., deploy their own load balancing/cache management policies

  Take into account the network economics of content delivery to
make the ICN design economically viable

Future Internet Architecture Design Requirements

CONIA (MuSIC 2015) # 4

University of Minnesota | Networking Lab

  Two basic tenets underlying all ICN designs:
1.  Content is the first-class object
2.  Content storage should be part of the network

substrate

But, we put forth a third tenet:
3.  One must not dictate how the namespace for

content is designed for all content providers
-  so as to enable a scalable, robust, economically

viable, and evolvable ICN architecture

CONIA: A New ICN Architecture

CONIA (MuSIC 2015) # 5

University of Minnesota | Networking Lab

Fetch cp_1.movie_name movie

User

Content Discovery

Content
Provider 1

Content
Provider 2

Content
Provider 3

Enter keywords here
Generic Search Engine

Two Dimensions of CONIA

CONIA (MuSIC 2015) # 6

Content Delivery

Content Discovery - Mapping user’s search query to actual content name
Content Delivery - The process of requesting and delivering content
We separate the two …

University of Minnesota | Networking Lab

CONIA: Content Delivery Architecture

CONIA (MuSIC 2015) # 7

CP Controller A

CP Controller B

Client Content Player

CSR

CSR

CP A’s CSR
CP B’s CSR

Unused CSR

! Three key components

  Content Store and Routing elements (CSR)
-  Generic, programmable, and shared resources
-  Offered by third party entities

  CP Controller
-  Content-provider (CP) specific
-  Provision & manage CSRs

  Client Content Player
-  Generic or CP-specific software
-  Allows users to interact with CP Controller and CSRs

! An open and standardized control framework API used
for interaction between the components.

University of Minnesota | Networking Lab

Functions
  Shared resource
  Caches content; routes requests and data
  Provides basic functions required for resource management & content delivery
  Stores CP-specific control logic specifying how to handle requests & data

CSR à CP Controller Interactions
  Reports statistics

CSR à CSR Interactions
  Reports health information
  Content offloading

CSR à Client Content Player Interactions
  Responds to client requests with data

Content Store and Routing (CSR)

CONIA (MuSIC 2015) # 8

University of Minnesota | Networking Lab

CP Controller

CONIA (MuSIC 2015) # 9

Functions
  Provisions CSRs
  Defines its own namespace
  Decides “what to cache”, “where to cache”
  Defines the control logic used to handle and forward requests and data
  Maps client requests to CSRs

CP Controller à CSR Interactions
  Pushes the namespace and content to CSRs
  Installs the control logic into CSRs

CP Controller à Client Content Player Interactions
  Responds to client requests with content map (such as MPD)
  Dynamically generates content map using the global view and the collected
statistics

University of Minnesota | Networking Lab

Functions
  Interprets the Content Map
  Renders and displays the content
 e.g., web browser, video player

Client Content Player à CP Controller Interactions
  Sends user request to CP controller and gets Content Map in return
  Reports statistics

Client Content Player à CSR Interactions

  Fetches content

Client Content Player

CONIA (MuSIC 2015) # 10

University of Minnesota | Networking Lab

  A programmable “open” box

  A logical view of CSR

CSR Design and Implementation

CONIA (MuSIC 2015) # 11

  Basic shared functions/libraries/services used by all
the containers
 e.g., web server, socket functions, I/O functions, etc.

  Every Content Provider (CP) has full control over its
container

  Every container has
  a storage device used to cache content, meta-data, statistics, etc.
  a Content Control Logic Table (CCLT) used to control the

content delivery plan

Current Research

Container Container Container

Container Engine

Basic functions
(bins/shared libraries)

CP1 CP2 CP3

Operating System

Hardware

University of Minnesota | Networking Lab

  An entry in CCLT is composed of three fields
  object ID – content name or identifier (granularity of object decided by CP)
  statistics – counters, etc.
  control logic – how to handle the object

  The control logic in CCLT is expressed using a declarative language
and defined in terms of two categories of context

  Content-related context – the state of an object e.g., cached or not-cached, etc.
  System-related context – the state of CSR/network condition e.g., load on CSR, etc.

CONIA (MuSIC 2015) # 12

CCLT Design
Object ID Statistics Control Logic

… … …
Content Control Logic Table (CCLT) Structure

University of Minnesota | Networking Lab

Use Cases: A Simple Example

CONIA (MuSIC 2015) # 13

A1 A2

B1 B2 B3

CP Controller

c1

….. c2 cn

CDS v1

video v1

st
ep

 1
 -

in
te

re
st

 fo
r v

1

st
ep

 2
 -

 re
pl

y
w

ith
 C

on
te

nt
 M

ap
 o

f v
1

Content Map of v1

s1:
[‘CACHED’] -> r=select_rate(‘BW’) ^ r is cached : reply

University of Minnesota | Networking Lab

Use Cases: Load-aware Forwarding

CONIA (MuSIC 2015) # 14

A1 A2

B1 B2 B3

CP Controller

c1

….. c2 cn

CDS v1

video v1

st
ep

 1
 -

in
te

re
st

 fo
r v

1

st
ep

 2
 -

 re
pl

y
w

ith
 C

on
te

nt
 M

ap
 o

f v
1

Content Map of v1

s1:
[‘NOT_CACHED’] -> forward (select ([A1, A2]))

load on CSR A1

s1:
[‘NOT_CACHED’] -> forward (select ([A1, A2], ‘LOAD’))

University of Minnesota | Networking Lab

Use Cases: Dynamic Adaptation

CONIA (MuSIC 2015) # 15

A1 A2

B1 B2 B3

CP Controller

c1

….. c2 cn

CDS v1

video v1

st
ep

 1
 -

in
te

re
st

 fo
r v

1

st
ep

 2
 -

 re
pl

y
w

ith
 C

on
te

nt
 M

ap
 o

f v
1

Content Map of v1

s1:
[‘CACHED’] -> r=select_rate(‘BW’) ^ r not cached : trcode(r), reply

load on CSR A1

University of Minnesota | Networking Lab

Use Cases: Flash Crowds & Load Management

CONIA (MuSIC 2015) # 16

A1 A2

B1 B2 B3

CP Controller

c1

….. c2 cn

CDS v1

video v1

st
ep

 1
 -

in
te

re
st

 fo
r v

1

st
ep

 2
 -

 re
pl

y
w

ith
 C

on
te

nt
 M

ap
 o

f v
1

Content Map of v1

load on CSR A1

step 7 – Many users show interest in
 v1 and request its chunks

step 9 – Expand v1’s CDS

B4

A3

cn+1

cn+m

CDS v1
⌃

step 8 – Push v1

University of Minnesota | Networking Lab

  CONIA: a straw-man proposal to argue for
  The need for namespace independence for complex information delivery
  The importance of providing larger control to content providers and

considering the network economics for better content delivery

  Overview of CONIA's content delivery architecture
  Basic functions of the key components
  Communications between components

  Several use cases illustrated how CONIA allows content
providers to dynamically adapt to user demands and optimize
content delivery to meet user QoE expectations

Conclusion

CONIA (MuSIC 2015) # 17

University of Minnesota | Networking Lab

1.  Global Internet Phenomena Report - 2H2014

Sandvine

2.  Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery
Vijay K. Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz
Steiner, and Zhi-Li Zhang
In INFOCOM, 2012

3.  Netflix OpenConnect
https://openconnect.netflix.com/

References

CONIA (MuSIC 2015) # 18

University of Minnesota | Networking Lab

Thank you

Questions?

